Showing posts with label exoplanet. Show all posts
Showing posts with label exoplanet. Show all posts

Friday, July 31, 2015

A whole world's wake-up call

The past few weeks in the world of space have been pretty hectic. Most especially because of the fantastic new views of Pluto we've been receiving, courtesy of the New Horizons flyby (which I wrote about in my last postcard). We've also been hearing about the "frozen primordial soup" of organic compounds detected by the European Space Agency's Philae lander on comet 67P/Churyumov–Gerasimenko, as detailed in a new special issue of Science. Some of these compounds may be important for the prebiotic synthesis of amino acids, sugars, and nucleobases, i.e., the very ingredients of life. 

The surface of comet 67P/ChuryumovGerasimenko, as imaged from 9 metres away. Credit: ESA
But there are two other recent news items I want to focus on in this postcard. First, the new photograph of the Earth captured by NASA's new Deep Space Climate Observatory (DSCOVR) satellite. And second, the recent discovery of an exoplanet that is being billed as Earth's 'twin'.

On 6 July 2015, the Earth Polychromatic Imaging Camera (EPIC) instrument on DSCOVR returned its first view of the entire sunlit Earth. Safe in its gravitationally stable location one million miles away—at a so-called Lagrange point—the satellite was able to obtain this kind of full-Earth portrait for the first time since the famous 'Blue marble' photograph was snapped by the Apollo 17 astronauts whilst on their way to the Moon in 1972. I've mentioned that older, stunning photo in a previous postcard, but as the most reproduced image in history, I think that it is more than worth showing again.

The famous and historic 'Blue marble', taken during the Apollo 17 mission in 1972. Credit: NASA
It might come as a surprise that it has taken more than 40 years to recapture Earth in a similar view. The pictures you've seen of Earth's full disc in the meantime have either been this Apollo 17 photograph, or composite images (i.e., several smaller images that have been stitched together). It is difficult to obtain these images because many variables come into play. The camera must be between the Earth and the Sun, and far enough away to capture the whole planet in its field of view. Although weather satellites—in geosynchronous orbits—get similar views, they cannot normally see an entire hemisphere without shadow.

The Earth, from one million miles, as seen by the Deep Space Climate Observatory on 6 July 2015. Credit: NASA
The data from EPIC will primarily be used to measure changes to the ozone and aerosol levels in Earth's atmosphere, as well as cloud height, vegetation properties, and ultraviolet reflectivity characteristics. But these new, beautiful, images of a whole Earth remind us how powerful it is to see our entire home in one go. As pointed out by John Grunsfeld, associate administrator of NASA's Science Mission Directorate, "these new views of Earth give us an important perspective of the true global nature of our spaceship Earth."

Indeed, I'm reminded of an excellent book I read several years ago by Robert Poole. In Earthrise: How Man First Saw The Earth, Poole tells the story of how images of Earth—such as the Blue marble and the equally famous Apollo 'Earthrise'—taken during the dawn of the space age, played a huge role in the birth of the now-popular environmental and conservation movements.

'Earthrise' photograph taken by astronaut Bill Anders during the Apollo 8 mission, on 24 December 1968. Credit: NASA

It is another aspect of these images of our blue Earth, however, that strikes me most. It is the human capacity for intelligence and creativity that enables space exploration and capturing of Earth-selfies from afar. Yet we do not see evidence of our presence in these pictures. In many ways, we are invisible to the universe. It is not life that makes Earth special. It is the blue oceans, the green forests, and the white wispy clouds in our lovely oxygen-rich atmosphere that make our world habitable. So for this postcard to our hypothetical alien planetary geologists, I want to send a snapshot of our whole world. Let them see the Earth and all its systems intertwined.

The uniqueness of Earth, however, might be under threat if a new discovery from the Kepler space telescope is anything to go by. On 23 July 2014, scientists working on the Kepler mission announced that they have found the most Earth-like extrasolar planet yet. The new planet—known as Kepler-452b—is located about 1,400 light years away, and is a similar size to Earth. In addition, Kepler-452b orbits a Sun-like star at a distance that is similar to that of Earth around the Sun. The planet is being hailed as "the first possibly rocky, habitable planet around a solar-type star". And it will thus, likely, become the focus of an intense search for extraterrestrial life. Perhaps we'll even find those alien planetary geologists there waiting for us.

Artist's concept of Kepler-452b in orbit around its parent star. Credit: NASA Ames/JPL-Caltech/T.Pyle
At a time when humanity seems to be as fractured as ever, perhaps we need a wake-up call like these ones from NASA. We need to be reminded every once in a while that we are all one family, stuck together here on our little spaceship Earth. We should do our utmost to look after it—and each other.

Sunday, September 14, 2014

Good morning Earthshine

When I first mentioned the overall idea for this blog to a friend and colleague, he immediately found an interesting way to slightly reframe the question. Instead of considering how alien planetary geologists might recognize rock specimens representative of Earth, he wondered how Earth might look to an alien astronomer observing us with a faraway telescope.

This question is actually a pretty obvious one, especially given the popular pursuit of extrasolar planets in current astronomical research. The first confirmed detection of an 'exoplanet'a planet that orbits a star other than our own Sunwas not made until 1992, but this field of research has now, almost literally, exploded. More than 1800 exoplanets have since been discovered, and this has largely been possible because of NASA's Kepler mission. The aim for this space observatory was to discover Earth-like exoplanets that are located in, or near, the 'habitable zone' of their parent star. This habitableor Goldilockszone is the region around a star where planets (with sufficient atmospheric pressure) can support liquid water at their surface.

The habitable zoneswhere liquid water can exist on the surface of a planetof different size and temperature stars. Credit: NASA Kepler Mission
This is all part of humankind's everlasting desire to discover lifepotentially sentientelsewhere in the universe. As our home continues to be the sole 'datapoint' for life, it is natural that we use Earth-like planets as a base for our search. And it is the special feature of liquid water at the surface that makes our planet so hospitable. The modern-day search for extraterrestrial life is therefore often focused on the hunt for this precious H2O. A discovery of a planet hosting water at its surface within another star's habitable zone, however, does not equal the discovery of life elsewhere in the cosmos.

To be more certain of a water-hosting planet's potential to harbor life, an additional telltale detection is required. The spectra from the observed exoplanets must include signs of lifebiosignaturesalong with the sign of water. But what would an astronomical biosignature look like, and would we even recognize such a signal from an exoplanet? To begin to answer this question, we first need to understand how Earth's atmosphere looks from afar and which of its properties hint at the rich biosphere that lies beneath. This information can then be used as a reliable baseline with which to compare exoplanet detections.
 
Spectra for Venus, Earth, and Mars illustrate Earth's unique biosignatures. All three planets have a strong atmospheric absorption caused by carbon dioxide (CO2), but only Earth's atmosphere has signals due to water (H2O) and ozone (O3) that can be representative of life. Credit: Mark Elowitz
As detailed in a 1993 study by Carl Sagan and colleagues, observations of Earth's atmosphere from spacein this case from the Galileo spacecraftreveal several biosignatures. These include abundances of molecular oxygen and methane that are far from chemical equilibrium, as well as a sharp increase in albedo at wavelengths longer than 700 nm, which is caused by vegetation. It is also known that as light passes through Earth's atmosphere it can be polarized due to scattering by aersols and cloud particles, and reflected at variable amounts by oceans and land. In a more recent paper, Michael Sterzik et al. use a technique known as spectropolarimetry to make a detailed analysis of Earth's atmospheric properties.

Instead of using space-based measurements of Earth, Sterzik and co-workers made observations of 'Earthshine' by pointing their telescopes at the Moon. This rather romantic sounding light originates from the Sun before being reflected by the Earth onto the Moon, and then back to Earth again. It is the reason you can sometimes to see the 'dark' part of a non-full Moon.

Earthshine illuminates the 'dark' portion of the Moon. Credit: Will Gater
Sterzik et al. used a technique known as spectropolarimetry (a combination of spectroscopy and photopolarimetry) to conduct a detailed investigation of Earth's atmosphere. This methodology is better than standard spectroscopy for characterizing exoplanet atmospheres. The Earthshine observations could be used to determine the fractional contribution of cloud and ocean contributions within the reflecting surface, and were sensitive to relatively small areas of vegetation.

It is measurements such as these, using the Moon as a handy mirror, that can be used as a benchmark for diagnosing the atmospheric composition and surfaces of potential life-bearing exoplanets. They also serve as a clue to what an alien astronomer might see when they glance in our direction. I hope they too can recognize how special our Earth is.